QCS Design (The 1st consideration for the updated IR)

Norihito Ohuchi, Masafumi Tawada

IR Beam Envelops based on the beam optics by Koiso

The space for the magnet design is defined by the area of 5 σ of beam size + 5 mm for the design margin of beam pipe + 3mm thickness of beam pipe.

Final focus quadrupole (QCSRD and QCSLD)

QCSRD

Cross section of QCSRD

Design parameters of QCSRD

- 6 layer coils (3-double pane cake coils)
- Inner coil radius : 90.0 mm
- Outer coil radius : 116.8 mm
- Cable size : 1.1 mm × 4.1 mm
 ➢ 1.1 mm × 7.0 mm (KEKB)
- Number of turns : 271 in one pole
 1st layer = 38, 2nd layer = 39
 3rd layer = 46, 4th layer = 47
 - 5th layer = 50, 6th layer = 51
- Field gradient : 40.49 T/m
- Magnet current : 1197.6 A
- Magnetic length : 0.299m
- Inductance : 69.98 mH
- Stored energy : 49.3 kJ
- Operation temperature : 4.5 K
- Operation point w.r.t. SC limit : 76%
- Magnet bore : room temp.

QCSRD R&D Magnet and Cryostat Design

QCSLD cooled at 1.9 K

Design parameters of QCSLD

- 6 layer coils
- Inner coil radius : 67.5 mm
- Outer coil radius : 92.7 mm
- Cable size : $1.1 \text{ mm} \times 4.1 \text{ mm}$
 - Cu ratio = 1.3
- Number of turns : 208 in one pole
 - 1st layer = 29, 2nd layer = 31
 - 3rd layer = 35, 4th layer = 37
 - 5th layer = 37, 6th layer = 39
- G by 2D cross section : 121.1 T/m
- Magnet current : 2834.8 A
- Magnetic length : 192.6 mm
- Estimated physical magnet length: 435 mm
- Operation temperature : 1.9 K
- Max. field in the magnet : 7.62 T
 - (without Belle and compensation solenoid fields)
- Operation point w.r.t. SC limit : 74%
- Magnet bore : room temp.

Cross section of magnet cryostat

Cable performance at 1.9 K for QCSLD

NbTi

Fig. 7. Field dependence of the normalized $J_c(B,T) / J_c$ (5 T, 4.2 K) for a typical LHC strand [13]-[14], measured at 1.9 and 4.2 K. The fit to the data is shown (solid lines) together with curves generated for different temperatures (dashed lines).

From LHC-Project Report 358

NbTi cable for QCSRD I_c = 3495 A @ 5T and 4.2 K Cu ratio = 1.8 Cable size = 1.1 mm × 4.1 mm

By decreasing temperature from 4.2 K to 1.9 K The conductor can transfer the

current of 0.9 imes I $_{c}$ @ 5T and 4.2 K

 $I_c = 3145.5 \text{ A} @ 8\text{T} \text{ and } 1.9 \text{ K}$

Cu ratio = 1.3 I_c = 4253 A @ 8T and 1.9 K

QCSLD cryostat

The connection between the QCS beam pipe and the IP beam pipe are very difficult.

- In the left side of IP, the QCS cryostat is considered to be inserted into Belle detector with connecting to IP beam pipe and holding SVD and the beam pipe.
- The QCS cryostat bore works as the beam pipe (warm bore).

Magnetic field profile by QCS in Belle detector

Location: $\theta = 0$ degree

Field profile by detector solenoid and compensation solenoids

Summary

- For the updated IR beam optics:
 - QCSRD: the same design as described in LOI.
 - Magnetic center: Z=1163.3 mm
 - QCSLD: updated magnet design
 - Magnetic center: Z=-666.7mm (Z=-969.4 mm in LOI)
 - The magnets in the cryostat are designed to be cooled at 1.9 K for getting the field gradient of 121.1T/m.
 - In the present design, the front of the cryostat locates at 427 mm from IP.
- For installation of hardware into IR:
 - QCSL cryostat, IP beam pipe and SVD are proposed to be an integrated architecture.